Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

# A new crystal modification of diammonium hydrogen phosphate, $\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{HPO}_{4}\right)$ 

Peter C. Kunz, ${ }^{\text {a }}$ Corinna Wetzel ${ }^{\text {a }}$ and Bernhard Spingler ${ }^{\text {b }}$<br>${ }^{\text {a}}$ Heirich-Heine-Universität Düsseldorf, Institut für Anorganische Chemie und Strukturchemie I, Universitätsstrasse 1, D-40225 Düsseldorf, Germany, and<br>${ }^{\mathbf{b}}$ Anorganisch-Chemisches Institut, Universität Zürich-Irchel, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland<br>Correspondence e-mail: peter.kunz@uni-duesseldorf.de

Received 8 February 2010; accepted 16 March 2010
Key indicators: single-crystal X-ray study; $T=183 \mathrm{~K}$; mean $\sigma(\mathrm{P}-\mathrm{O})=0.002 \AA$; $R$ factor $=0.048 ; w R$ factor $=0.158$; data-to-parameter ratio $=29.7$.

The addition of hexafluoridophosphate salts (ammonium, silver, thallium or potassium) is usually used to precipitate complex cations from aqueous solutions. It has long been known that $\mathrm{PF}_{6}{ }^{-}$is sensitive towards hydrolysis under acidic conditions [Gebala \& Jones (1969). J. Inorg. Nucl. Chem. 31, 771-776; Plakhotnyk et al. (2005). J. Fluorine Chem. 126, 2731]. During the course of our investigation into coinage metal complexes of diphosphine ligands, we used ammonium hexafluoridophosphate in order to crystallize $[\mathrm{Ag}$ (diphosphine $\left.)_{2}\right] \mathrm{PF}_{6}$ complexes. From these solutions we always obtained needle-like crystals which turned out to be the title compound, $2 \mathrm{NH}_{4}{ }^{+} \cdot \mathrm{HPO}_{4}{ }^{2-}$. It was received as the hydrolysis product of $\mathrm{NH}_{4} \mathrm{PF}_{6}$. The crystals are a new modification of diammonium hydrogen phosphate. In contrast to the previously published polymorph [Khan et al. (1972). Acta Cryst. B28, 2065-2069], $Z^{\prime}$ of the title compound is 2. In the new modification of the title compound, there are eight molecules of $\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{HPO}_{4}\right)$ in the unit cell. The structure consists of $\mathrm{PO}_{3} \mathrm{OH}$ and $\mathrm{NH}_{4}$ tetrahedra, held together by $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

## Related literature

For the study of another crystal modification of the title compound, see: Khan et al. (1972). For the hydrolysis of hexafluoridophosphates, see: Akbayeva et al. (2006); Deifel et al. (2008); Fernandez-Galan et al. (1994); Gebala \& Jones (1969); Nikitenko et al. (2007); Plakhotnyk et al. (2005).

## Experimental

## Crystal data

| $2 \mathrm{NH}_{4}{ }^{+} \cdot \mathrm{HPO}_{4}{ }^{2-}$ | $a=11.2868(3) \AA$ |
| :--- | :--- |
| $M_{r}=132.06$ | $b=15.3466(4) \AA$ |
| Monoclinic, $P 2_{1} / c$ | $c=6.41894$ (19) $\AA$ |

$\beta=90.795(3)^{\circ}$
$V=1111.74(5) \AA^{3}$
$Z=8$
Mo $K \alpha$ radiation

Data collection
Oxford Xcalibur Ruby CCD diffractometer
Absorption correction: multi-scan CrysAlis PRO (Oxford Diffraction, 2009)
$T_{\text {min }}=0.891, T_{\text {max }}=0.955$

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
H atoms treated by a mixture of
$w R\left(F^{2}\right)=0.158$ independent and constrained refinement
$S=1.21$
5384 reflections
181 parameters
16 restraints
$\mu=0.42 \mathrm{~mm}^{-1}$
$T=183 \mathrm{~K}$
$0.44 \times 0.17 \times 0.11 \mathrm{~mm}$

22537 measured reflections
5384 independent reflections 4400 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.033$
$\Delta \rho_{\text {max }}=0.82 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.69 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | H $\cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 7^{\mathrm{i}}$ | 0.78 (4) | 1.80 (4) | 2.570 (2) | 168 (4) |
| $\mathrm{O} 5-\mathrm{H} 5 \cdots \mathrm{O} 8^{\text {ii }}$ | 0.85 (4) | 1.79 (4) | 2.632 (2) | 170 (4) |
| $\mathrm{N} 11-\mathrm{H} 11 A \cdots \mathrm{O} 4^{\text {iii }}$ | 0.86 (2) | 1.89 (2) | 2.747 (2) | 175 (4) |
| $\mathrm{N} 11-\mathrm{H} 11 \mathrm{~B} \cdots \mathrm{O} 8^{\text {i }}$ | 0.86 (2) | 2.10 (2) | 2.951 (2) | 171 (3) |
| $\mathrm{N} 11-\mathrm{H} 11 C \cdots \mathrm{O} 3^{\text {iv }}$ | 0.88 (2) | 1.99 (2) | 2.852 (3) | 169 (3) |
| $\mathrm{N} 11-\mathrm{H} 11 \mathrm{D} \cdots \mathrm{O} 4^{\text {i }}$ | 0.88 (2) | 2.01 (2) | 2.870 (2) | 167 (3) |
| $\mathrm{N} 12-\mathrm{H} 12 A \cdots \mathrm{O}^{\vee}$ | 0.87 (2) | 1.91 (2) | 2.755 (2) | 165 (3) |
| $\mathrm{N} 12-\mathrm{H} 12 B \cdots \mathrm{O} 5^{\text {vi }}$ | 0.88 (2) | 2.16 (2) | 3.008 (3) | 161 (3) |
| N12-H12C...O6 ${ }^{\text {i }}$ | 0.87 (2) | 1.99 (2) | 2.827 (2) | 161 (3) |
| N12-H12D $\cdots$ O2 | 0.88 (2) | 1.88 (2) | 2.754 (2) | 175 (3) |
| N13-H13A . O 3 | 0.86 (2) | 1.92 (2) | 2.773 (2) | 172 (3) |
| $\mathrm{N} 13-\mathrm{H} 13 B \cdots \mathrm{O} 2^{\text {vii }}$ | 0.86 (2) | 1.96 (2) | 2.822 (2) | 175 (3) |
| $\mathrm{N} 13-\mathrm{H} 13 \mathrm{C} \cdots \mathrm{O}^{\text {v }}$ | 0.89 (2) | 1.95 (2) | 2.830 (2) | 168 (3) |
| $\mathrm{N} 13-\mathrm{H} 13 \mathrm{D} \cdots \mathrm{O} 2^{\text {ii }}$ | 0.86 (2) | 1.96 (2) | 2.820 (2) | 176 (3) |
| N14-H14A . . ${ }^{\text {O }}$ | 0.87 (2) | 1.90 (2) | 2.771 (2) | 174 (3) |
| $\mathrm{N} 14-\mathrm{H} 14 B \cdots \mathrm{O} 8^{\text {vii }}$ | 0.86 (2) | 2.01 (2) | 2.859 (2) | 171 (3) |
| $\mathrm{N} 14-\mathrm{H} 14 \mathrm{C} \cdots \mathrm{O}^{\text {iv }}$ | 0.86 (2) | 1.92 (2) | 2.784 (2) | 178 (3) |
| N14-H14D . . ${ }^{\text {O }}$ | 0.89 (2) | 1.89 (2) | 2.771 (2) | 171 (3) |

Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (iii) $-x, y+\frac{1}{2},-z+\frac{3}{2}$; (iv)
$-x,-y+1,-z+2$; (v) $x+1, y, z+1$; (vi) $x+1, y, z$; (vii) $x, y, z+1$.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

BS thanks the University of Zürich for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2137).

## References

Akbayeva, D., Vaira, M., Costantini, S., Peruzzini, M. \& Stoppioni, P. (2006). Dalton Trans. pp. 389-395.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Deifel, N. P., Holman, K. T. \& Cahil, C. (2008). Chem. Commun. pp. 60376038.

## inorganic compounds

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Fernandez-Galan, R., Manzano, B., Otero, A., Lanfranchi, M. \& Pellinghelli, M. (1994). Inorg. Chem. 33, 2309-2312.

Gebala, A. \& Jones, M. (1969). J. Inorg. Nucl. Chem. 31, 771-776.
Khan, A. A., Roux, J. P. \& James, W. J. (1972). Acta Cryst. B28, 2065-2069. Nikitenko, S., Berthon, C. \& Moisy, P. (2007). C. R. Chim. 10, 1122-1127.

Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction, Yarnton, England.
Plakhotnyk, A., Ernst, L. \& Schmutzler, R. (2005). J. Fluorine Chem. 126, $27-$ 31.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

## supplementary materials

Acta Cryst. (2010). E66, i26-i27 [ doi:10.1107/S1600536810009839]

## A new crystal modification of diammonium hydrogen phosphate, $\left(\mathbf{N H}_{4}\right)_{2}\left(\mathbf{H P O}_{4}\right)$

P. C. Kunz, C. Wetzel and B. Spingler

## Comment

The addition of hexafluorophosphate salts (ammonium, silver, thallium or potassium) is usually used to precipitate complex cations from aqueous solutions. It is long known, that $\mathrm{PF}_{6}{ }^{-}$is sensitive towards hydrolysis under acidic conditions (Gebala and Jones 1969; Plakhotnyk, Ernst et al. 2005). In organic solvents the spatial hydrolysis to intermediate species as HF, $\mathrm{POF}_{3}$ and $\mathrm{PO}_{2} \mathrm{~F}_{2}{ }^{-}$is observed (Fernandez-Galan, Manzano et al. 1994; Akbayeva, Vaira et al. 2006; Nikitenko, Berthon et al. 2007) and under hydrothermal conditions this reaction is used for the formation of phosphate materials (Deifel, Holman et al. 2008).

During the course of our investigation into coinage metal complexes of diphosphine ligands we used ammonium hexafluorophosphate in order to crystallise $\left.[\mathrm{Ag} \text { (diphosphine })_{2}\right] \mathrm{PF}_{6}$ complexes. From these solutions we always obtained needlelike crystals which turned out to be the title compound $\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{HPO}_{4}\right)$ as the product of hydrolysis of $\mathrm{NH}_{4} \mathrm{PF}_{6}$.

A modification of diammonium hydrogen phosphate is known with the cell parameters $a=11.043$ (6), $b=6.700$ (3), $c=$ 8.031 (4), $\beta=113.42(3)^{\circ}$ and $Z=4$.(Khan, Roux et al. 1972) In the new modification of the title compound reported here, there are eight molecules of $\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{HPO}_{4}\right)$ in the unit cell. The structure consists of $\mathrm{PO}_{4}$ and $\mathrm{NH}_{4}$ tetrahedra, held together by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. These hydrogen bonds are more or less linear $\left(169^{\circ} \ll(\mathrm{DHA})<178^{\circ}\right)$. Of the four $\mathrm{P}-\mathrm{O}$ bonds in both $\mathrm{PO}_{4}$ tetrahedra, one is longer than the remaining three, typical of a $\mathrm{O}_{3} \mathrm{P}(\mathrm{OH})$ group. The two different $\mathrm{HPO}_{4}{ }^{-}$molecules $\left({\mathrm{P} 1 \mathrm{O}_{4}}\right.$ and $\left.\mathrm{P}_{2} \mathrm{O}_{4}\right)$ are hydrogen bonded to ten and seven ammonium ions, respectively. In hydrogen phosphate P 2 , one $\mathrm{NH}_{4}{ }^{+}$molecule is bound to O 5 and O 7 , two to O 8 and three to O 6 . In the other hydrogen phosphate, the three non-protonated O -atoms $\mathrm{O} 2, \mathrm{O} 3$ and O 4 are bound to three $\mathrm{NH}_{4}{ }^{+}$molecules each, whereas the protonated O 1 is only bound to one $\mathrm{NH}_{4}{ }^{+}$molecule. In the hydrogen phosphate P 1 the hydroxyl group O 1 H 1 forms a hydrogen bridge to O 7 ( $d$ $=1.80(4) \AA)$ and in the hydrogen phosphate P 2 the hydroxyl group O5H5 forms a hydrogen bridge to $\mathrm{O} 8(d=1.79(4) \AA)$. The $\mathrm{N}-\mathrm{O}$ distances around the four-coordinated ammonium ions N 13 and N 14 are within the range of $2.77<d<2.86 \AA$; The $\mathrm{N} \cdots \mathrm{O}$ distances around N 12 fall within this range with the exception of $\mathrm{N} 12 \cdots \mathrm{O} 5$ which is significantly longer $\left(d_{\mathrm{N} 12 \mathrm{O} 5}\right.$ $=3.007 \AA$ ). A very different picture is found around N11. Here, five neighbouring O-atoms are found, three of which are in a shorter distance $(2.74<d<2.87 \AA)$ and two in a longer distance $\left(d_{\mathrm{N} 11 \mathrm{O} 5}=2.951 \AA\right.$ and $\left.d_{\mathrm{N} 1101}=3.048 \AA\right)$. The fifth $\mathrm{N} \cdots \mathrm{O}$ contact may be a result of dynamic or static disorder of the ammonium ion or that each N atom in addition to three normal $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bonds also formed one bifurcated bond. This is in contrast to the other modification, in which each ammonium ion has five $\mathrm{N} \cdots \mathrm{O}$ contacts smaller than $3.4 \AA$. Since Khan and Roux (Khan, Roux et al. 1972) only reported that they used "a commercially supplied crystalline sample", we cannot compare the crystallization conditions that lead to the two different crystal forms.

## supplementary materials

## Experimental

A suitable crystal was covered with oil (Infineum V8512, formerly known as Paratone N), mounted on top of a glass fibre and immediately transferred to the diffractometer. The final model was checked for higher symmetry with help of the program PLATON (Spek, 2009).

## Refinement

All hydrogen atoms were located by difference Fourier synthesis and refined with fixed individual displacement parameters $[\mathrm{U}(\mathrm{H})=1.5 \mathrm{Ueq}(\mathrm{O})]$ at an O-H distance of $0.87 \AA$.

## Figures



Fig. 1. H-bonded network in the solid-state of the title compound. Displacement ellipsoids are drawn at a $50 \%$ level, H -atoms are represented as capped sticks.

## diammonium hydrogen phosphate

## Crystal data

$2 \mathrm{NH}_{4}{ }^{+} \cdot \mathrm{HPO}_{4}{ }^{2-}$
$M_{r}=132.06$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=11.2868$ (3) $\AA$
$b=15.3466$ (4) $\AA$
$c=6.41894(19) \AA$
$\beta=90.795(3)^{\circ}$
$V=1111.74(5) \AA^{3}$
$Z=8$
$F(000)=560$
$D_{\mathrm{x}}=1.578 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.7107 \AA$
Cell parameters from 11185 reflections
$\theta=2.7-37.6^{\circ}$
$\mu=0.42 \mathrm{~mm}^{-1}$
$T=183 \mathrm{~K}$
Needle, colourless
$0.44 \times 0.17 \times 0.11 \mathrm{~mm}$

## Data collection

Oxford Xcalibur Ruby CCD
diffractometer
Radiation source: Enhance (Mo) X-ray Source graphite
Detector resolution: 10.4498 pixels $\mathrm{mm}^{-1}$
$\omega$ oscillation scan
Absorption correction: multi-scan
CrysAlis PRO (Oxford Diffraction, 2009)
$T_{\text {min }}=0.891, T_{\text {max }}=0.955$

5384 independent reflections
4400 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=36.3^{\circ}, \theta_{\text {min }}=2.7^{\circ}$
$h=-18 \rightarrow 18$
$k=-25 \rightarrow 25$
$l=-9 \rightarrow 10$

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.158$
$S=1.21$
5384 reflections
181 parameters
16 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0508 P)^{2}+1.9491 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.82 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.69$ e $\AA^{-3}$

## Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor wR and goodness of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating $R$ factors(gt) etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$ - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $A^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }}{ }^{*} / U_{\text {eq }}$ |
| :--- | :--- | :--- | :--- | :--- |
| O1 | $0.12341(16)$ | $0.48227(11)$ | $0.6812(3)$ | $0.0260(4)$ |
| H1 | $0.181(4)$ | $0.502(3)$ | $0.635(6)$ | $0.039^{*}$ |
| O2 | $0.25104(13)$ | $0.34866(10)$ | $0.7264(2)$ | $0.0180(3)$ |
| O3 | $0.13920(15)$ | $0.40992(11)$ | $1.0319(2)$ | $0.0198(3)$ |
| O4 | $0.02645(13)$ | $0.34042(10)$ | $0.7334(3)$ | $0.0190(3)$ |
| O5 | $-0.41866(14)$ | $0.29289(11)$ | $0.4731(3)$ | $0.0209(3)$ |
| H5 | $-0.368(3)$ | $0.259(3)$ | $0.529(6)$ | $0.031^{*}$ |
| O6 | $-0.47633(13)$ | $0.40326(10)$ | $0.2142(2)$ | $0.0174(3)$ |
| O7 | $-0.30247(15)$ | $0.43252(11)$ | $0.4549(2)$ | $0.0209(3)$ |
| O8 | $-0.28270(13)$ | $0.32102(10)$ | $0.1683(2)$ | $0.0182(3)$ |
| P1 | $0.13662(4)$ | $0.39195(3)$ | $0.79806(7)$ | $0.01228(10)$ |
| P2 | $-0.36645(4)$ | $0.36515(3)$ | $0.32105(7)$ | $0.01211(10)$ |
| N11 | $0.03108(16)$ | $0.66864(12)$ | $0.7030(3)$ | $0.0185(3)$ |
| H11A | $0.009(3)$ | $0.7219(13)$ | $0.720(5)$ | $0.028^{*}$ |
| H11B | $0.1058(17)$ | $0.667(2)$ | $0.730(5)$ | $0.028^{*}$ |
| H11C | $-0.017(3)$ | $0.638(2)$ | $0.780(5)$ | $0.028^{*}$ |


| H11D | $0.018(3)$ | $0.658(2)$ | $0.570(3)$ | $0.028^{*}$ |
| :--- | :--- | :--- | :--- | :--- |
| N12 | $0.47645(17)$ | $0.41255(13)$ | $0.7925(3)$ | $0.0188(3)$ |
| H12A | $0.500(3)$ | $0.402(2)$ | $0.920(3)$ | $0.028^{*}$ |
| H12B | $0.523(3)$ | $0.382(2)$ | $0.711(5)$ | $0.028^{*}$ |
| H12C | $0.479(3)$ | $0.4675(13)$ | $0.760(5)$ | $0.028^{*}$ |
| H12D | $0.4031(19)$ | $0.395(2)$ | $0.770(5)$ | $0.028^{*}$ |
| N13 | $0.29995(16)$ | $0.32905(12)$ | $1.2991(3)$ | $0.0182(3)$ |
| H13A | $0.252(3)$ | $0.351(2)$ | $1.207(4)$ | $0.07^{*}$ |
| H13B | $0.285(3)$ | $0.339(2)$ | $1.428(3)$ | $0.027^{*}$ |
| H13C | $0.3748(18)$ | $0.345(2)$ | $1.278(5)$ | $0.027^{*}$ |
| H13D | $0.288(3)$ | $0.2742(12)$ | $1.282(5)$ | $0.027^{*}$ |
| N14 | $-0.18493(17)$ | $0.42049(12)$ | $0.8356(3)$ | $0.0178(3)$ |
| H14A | $-0.227(3)$ | $0.425(2)$ | $0.720(4)$ | $0.027^{*}$ |
| H14B | $-0.221(3)$ | $0.394(2)$ | $0.933(4)$ | $0.027^{*}$ |
| H14C | $-0.169(3)$ | $0.4726(14)$ | $0.877(5)$ | $0.027^{*}$ |
| H14D | $-0.1132(19)$ | $0.398(2)$ | $0.814(5)$ | $0.027^{*}$ |

Atomic displacement parameters $\left(A^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| O1 | $0.0185(7)$ | $0.0193(7)$ | $0.0403(10)$ | $0.0021(6)$ | $0.0007(6)$ | $0.0145(7)$ |
| O2 | $0.0140(6)$ | $0.0182(6)$ | $0.0220(7)$ | $0.0022(5)$ | $0.0025(5)$ | $-0.0015(5)$ |
| O3 | $0.0225(7)$ | $0.0215(7)$ | $0.0153(6)$ | $0.0000(5)$ | $-0.0005(5)$ | $-0.0035(5)$ |
| O4 | $0.0142(6)$ | $0.0179(6)$ | $0.0249(7)$ | $-0.0037(5)$ | $-0.0022(5)$ | $-0.0034(5)$ |
| O5 | $0.0183(6)$ | $0.0207(7)$ | $0.0237(7)$ | $0.0025(5)$ | $0.0055(5)$ | $0.0099(5)$ |
| O6 | $0.0145(6)$ | $0.0189(6)$ | $0.0188(6)$ | $0.0015(5)$ | $-0.0032(5)$ | $0.0032(5)$ |
| O7 | $0.0221(7)$ | $0.0242(7)$ | $0.0165(6)$ | $-0.0048(6)$ | $-0.0035(5)$ | $-0.0031(5)$ |
| O8 | $0.0150(6)$ | $0.0206(7)$ | $0.0192(6)$ | $-0.0010(5)$ | $0.0046(5)$ | $-0.0033(5)$ |
| P1 | $0.01141(19)$ | $0.01162(19)$ | $0.01380(19)$ | $-0.00003(14)$ | $-0.00053(14)$ | $-0.00007(14)$ |
| P2 | $0.01113(18)$ | $0.0140(2)$ | $0.01122(18)$ | $-0.00061(14)$ | $0.00038(13)$ | $0.00073(14)$ |
| N11 | $0.0167(7)$ | $0.0184(7)$ | $0.0205(8)$ | $0.0015(6)$ | $-0.0007(6)$ | $-0.0001(6)$ |
| N12 | $0.0170(7)$ | $0.0226(8)$ | $0.0169(7)$ | $0.0013(6)$ | $-0.0008(6)$ | $-0.0018(6)$ |
| N13 | $0.0160(7)$ | $0.0199(7)$ | $0.0187(7)$ | $-0.0015(6)$ | $-0.0001(5)$ | $0.0002(6)$ |
| N14 | $0.0178(7)$ | $0.0197(7)$ | $0.0159(7)$ | $-0.0006(6)$ | $0.0001(5)$ | $-0.0016(6)$ |

Geometric parameters ( $\AA$, ${ }^{\circ}$ )

| O1-P1 | 1.5821 (17) | N11-H11D | 0.877 (18) |
| :---: | :---: | :---: | :---: |
| O1-H1 | 0.78 (4) | N12-H12A | 0.869 (18) |
| O2-P1 | 1.5287 (15) | N12-H12B | 0.878 (18) |
| O3-P1 | 1.5257 (16) | N12-H12C | 0.868 (18) |
| O4-P1 | 1.5262 (15) | N12-H12D | 0.879 (18) |
| O5-P2 | 1.5955 (16) | N13-H13A | 0.863 (18) |
| O5-H5 | 0.85 (4) | N13-H13B | 0.862 (18) |
| O6-P2 | 1.5254 (15) | N13-H13C | 0.892 (18) |
| O7-P2 | 1.5201 (16) | N13-H13D | 0.859 (18) |
| O8-P2 | 1.5295 (15) | N14-H14A | 0.874 (18) |
| N11-H11A | 0.862 (18) | N14-H14B | 0.856 (18) |
| N11-H11B | 0.859 (18) | N14-H14C | 0.861 (18) |

## sup-4

supplementary materials

| N11-H11C | 0.876 (18) |
| :---: | :---: |
| P1-O1-H1 | 116 (3) |
| P2-O5-H5 | 115 (3) |
| $\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 4$ | 111.44 (9) |
| $\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 2$ | 111.70 (9) |
| $\mathrm{O} 4-\mathrm{P} 1-\mathrm{O} 2$ | 112.43 (9) |
| $\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 1$ | 107.95 (10) |
| $\mathrm{O} 4-\mathrm{P} 1-\mathrm{O} 1$ | 104.71 (10) |
| $\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 1$ | 108.21 (9) |
| O7-P2-O6 | 111.73 (9) |
| O7-P2-O8 | 111.74 (9) |
| O6-P2-O8 | 112.79 (9) |
| O7-P2-O5 | 107.68 (9) |
| O6-P2-O5 | 103.69 (9) |
| O8-P2-O5 | 108.73 (9) |
| H11A-N11-H11B | 107 (3) |
| H11A-N11-H11C | 105 (3) |
| H11B-N11-H11C | 119 (3) |
| H11A-N11-H11D | 105 (3) |
| H11B-N11-H11D | 110 (3) |


| N14-H14D | $0.890(18)$ |
| :--- | :--- |
| H11C-N11-H11D | $110(3)$ |
| H12A-N12-H12B | $107(3)$ |
| H12A-N12-H12C | $113(3)$ |
| H12B-N12-H12C | $111(3)$ |
| H12A-N12-H12D | $112(3)$ |
| H12B-N12-H12D | $108(3)$ |
| H12C-N12-H12D | $106(3)$ |
| H13A-N13-H13B | $118(3)$ |
| H13A-N13-H13C | $112(3)$ |
| H13B-N13-H13C | $107(3)$ |
| H13A-N13-H13D | $101(3)$ |
| H13B-N13-H13D | $105(3)$ |
| H13C-N13-H13D | $113(3)$ |
| H14A-N14-H14B | $114(3)$ |
| H14A-N14-H14C | $107(3)$ |
| H14B-N14-H14C | $109(3)$ |
| H14A-N14-H14D | $112(3)$ |
| H14B-N14-H14D | $112(3)$ |
| H14C-N14-H14D | $102(3)$ |

Hydrogen-bond geometry ( $A,{ }^{\circ}$ )

| $D-\mathrm{H} \cdots \mathrm{A}$ | $D$ - H | $\mathrm{H} \cdots \mathrm{A}$ | ${ }^{\cdots} \cdots$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 7^{\text {i }}$ | 0.78 (4) | 1.80 (4) | 2.570 (2) | 168 (4) |
| $\mathrm{O} 5-\mathrm{H} 5 \cdots \mathrm{O} 8^{\text {ii }}$ | 0.85 (4) | 1.79 (4) | 2.632 (2) | 170 (4) |
| $\mathrm{N} 11-\mathrm{H} 11 \mathrm{~A} \cdots \mathrm{O} 4^{\text {iii }}$ | 0.86 (2) | 1.89 (2) | 2.747 (2) | 175 (4) |
| N11-H11B $\cdots \mathrm{O}^{\text {i }}$ | 0.86 (2) | 2.10 (2) | 2.951 (2) | 171 (3) |
| $\mathrm{N} 11-\mathrm{H} 11 \mathrm{C} \cdots \mathrm{O}^{\text {iv }}$ | 0.88 (2) | 1.99 (2) | 2.852 (3) | 169 (3) |
| N11-H11D $\cdots{ }^{\text {a }}{ }^{\text {i }}$ | 0.88 (2) | 2.01 (2) | 2.870 (2) | 167 (3) |
| $\mathrm{N} 12-\mathrm{H} 12 \mathrm{~A} \cdots \mathrm{O}^{\mathrm{V}}$ | 0.87 (2) | 1.91 (2) | 2.755 (2) | 165 (3) |
| $\mathrm{N} 12-\mathrm{H} 12 \mathrm{~B} \cdots \mathrm{O}^{\text {vi }}$ | 0.88 (2) | 2.16 (2) | 3.008 (3) | 161 (3) |
| $\mathrm{N} 12-\mathrm{H} 12 \mathrm{C} \cdots \mathrm{O}^{\text {i }}$ | 0.87 (2) | 1.99 (2) | 2.827 (2) | 161 (3) |
| $\mathrm{N} 12-\mathrm{H} 12 \mathrm{D} \cdots \mathrm{O} 2$ | 0.88 (2) | 1.88 (2) | 2.754 (2) | 175 (3) |
| N13-H13A $\cdots \mathrm{O}$ | 0.86 (2) | 1.92 (2) | 2.773 (2) | 172 (3) |
| $\mathrm{N} 13-\mathrm{H} 13 \mathrm{~B} \cdots \mathrm{O} 2^{\text {vii }}$ | 0.86 (2) | 1.96 (2) | 2.822 (2) | 175 (3) |
| $\mathrm{N} 13-\mathrm{H} 13 \mathrm{C} \cdots \mathrm{O}^{\text {v }}$ | 0.89 (2) | 1.95 (2) | 2.830 (2) | 168 (3) |
| $\mathrm{N} 13-\mathrm{H} 13 \mathrm{D} \cdots \mathrm{O} 2^{\text {ii }}$ | 0.86 (2) | 1.96 (2) | 2.820 (2) | 176 (3) |
| N14-H14A $\cdots$ O7 | 0.87 (2) | 1.90 (2) | 2.771 (2) | 174 (3) |
| N14-H14B $\cdots$ O8 ${ }^{\text {vii }}$ | 0.86 (2) | 2.01 (2) | 2.859 (2) | 171 (3) |
| $\mathrm{N} 14-\mathrm{H} 14 \mathrm{C} \cdots 3^{\text {iv }}$ | 0.86 (2) | 1.92 (2) | 2.784 (2) | 178 (3) |
| N14-H14D $\cdots$ O | 0.89 (2) | 1.89 (2) | 2.771 (2) | 171 (3) |

Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $x,-y+1 / 2, z+1 / 2$; (iii) $-x, y+1 / 2,-z+3 / 2$; (iv) $-x,-y+1,-z+2$; (v) $x+1, y, z+1$; (vi) $x+1, y, z$; (vii) $x, y, z+1$.

## supplementary materials

Fig. 1


